login
A297858
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 3, 1, 2, 7, 7, 2, 3, 13, 15, 13, 3, 5, 23, 19, 19, 23, 5, 8, 49, 21, 30, 21, 49, 8, 13, 95, 33, 53, 53, 33, 95, 13, 21, 177, 53, 90, 45, 90, 53, 177, 21, 34, 359, 77, 145, 81, 81, 145, 77, 359, 34, 55, 705, 111, 244, 130, 131, 130, 244, 111, 705, 55, 89, 1351, 171, 406
OFFSET
1,5
COMMENTS
Table starts
..0...1...1...2...3...5...8..13..21..34...55...89..144...233...377...610...987
..1...3...7..13..23..49..95.177.359.705.1351.2689.5303.10321.20423.40353.79223
..1...7..15..19..21..33..53..77.111.171..269..415..643..1013..1605..2543..4041
..2..13..19..30..53..90.145.244.406.771.1396.2472.4358..7688.13953.25626.46458
..3..23..21..53..45..81.130.186.203.313..533..737.1132..1722..2282..3719..5672
..5..49..33..90..81.131.146.252.320.522..705.1188.1654..2554..4086..6240..9384
..8..95..53.145.130.146.181.289.294.594..711.1167.1681..2374..3827..6129..8841
.13.177..77.244.186.252.289.298.406.568..780.1009.1299..1639..2169..2986..4144
.21.359.111.406.203.320.294.406.430.614..791.1026.1413..1823..2395..3684..5064
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-3) -10*a(n-4) +4*a(n-5) for n>6
k=3: a(n) = 2*a(n-1) -a(n-4) -a(n-5) -a(n-6) +a(n-7) +a(n-8) for n>9
k=4: [order 32] for n>37
k=5: [order 76] for n>81
EXAMPLE
Some solutions for n=7 k=4
..0..0..1..1. .0..1..1..0. .0..1..1..0. .0..0..1..0. .0..0..1..0
..1..1..0..0. .0..1..0..0. .0..0..1..0. .1..0..1..0. .1..1..1..0
..1..0..1..0. .0..1..1..1. .1..1..1..0. .1..0..0..1. .0..1..0..1
..1..1..0..0. .1..0..1..0. .0..0..1..1. .0..1..0..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .1..1..0..0. .1..0..0..1. .0..1..0..1
..1..0..0..0. .1..1..0..1. .0..0..0..1. .1..0..1..0. .0..1..0..1
..0..1..1..0. .0..0..1..0. .0..1..1..0. .0..0..1..0. .0..1..0..1
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A186366 A135338 A084602 * A298093 A298055 A298888
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 07 2018
STATUS
approved