

A297832


Solution of the complementary equation a(n) = a(1)*b(n1)  a(0)*b(n2) + 2*n  2, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.


5



1, 2, 7, 10, 13, 18, 20, 25, 27, 32, 34, 37, 40, 45, 49, 51, 54, 57, 62, 66, 68, 71, 74, 79, 83, 85, 90, 92, 97, 99, 102, 105, 110, 112, 115, 120, 124, 126, 131, 133, 138, 140, 143, 146, 151, 153, 156, 161, 165, 167, 172, 174, 179, 181, 184, 187, 192, 194
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A297830 for a guide to related sequences.
a(n)  (2+sqrt(2))*n < 2 for n >= 1.


LINKS

Clark Kimberling, Table of n, a(n) for n = 0..10000


EXAMPLE

a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 7.
Complement: (b(n)) = (3,4,5,7,8,10,12,13,15,17,18,19,...)


MATHEMATICA

a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[1]*b[n  1]  a[0]*b[n  2] + 2 n  2;
j = 1; While[j < 100, k = a[j]  j  1;
While[k < a[j + 1]  j + 1, b[k] = j + k + 2; k++]; j++]; k
Table[a[n], {n, 0, k}] (* A297832 *)


CROSSREFS

Cf. A297826, A297830.
Sequence in context: A029904 A026364 A203621 * A003158 A130336 A303741
Adjacent sequences: A297829 A297830 A297831 * A297833 A297834 A297835


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Feb 04 2018


STATUS

approved



