login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297830 Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)).  See Comments. 28
1, 2, 9, 12, 15, 18, 21, 26, 28, 33, 35, 40, 42, 47, 49, 54, 56, 59, 62, 67, 71, 73, 76, 79, 84, 88, 90, 93, 96, 101, 105, 107, 110, 113, 118, 122, 124, 127, 130, 135, 139, 141, 146, 148, 153, 155, 158, 161, 166, 168, 171, 176, 180, 182, 187, 189, 194, 196 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Conjecture: a(n) - (2 +sqrt(2))*n < 3 for n >= 1.

Guide to related sequences having initial values a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, where (b(n)) is the increasing sequence of positive integers not in (a(n)):

***

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + n           (a(n)) = A297826; (b(n)) = A297997

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n         (a(n)) = A297830; (b(n)) = A298003

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 3*n         (a(n)) = A297836; (b(n)) = A298004

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 4*n         (a(n)) = A297837; (b(n)) = A298005

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 1     (a(n)) = A297831; (b(n)) = A298006

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 2     (a(n)) = A297832; (b(n)) = A298007

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 3     (a(n)) = A297833; (b(n)) = A298108

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 4     (a(n)) = A297834; (b(n)) = A298209

a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n + 1     (a(n)) = A297835;

a(n) = a(1)*b(n-1) - a(0)*b(n-2)+floor(5*n/2)  (a(n)) = A297998;

***

For sequences (a(n)) and (b(n)) associated with equations of the form a(n) = a(1)*b(n) - a(0)*b(n-1), see the guide at A297800.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..10000

EXAMPLE

a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 9.

Complement: (b(n)) = (3,4,5,6,8,10,11,13,14,16,17,19,...)

MATHEMATICA

a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;

a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 2 n;

j = 1; While[j < 100, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k

Table[a[n], {n, 0, k}]  (* A297830 *)

CROSSREFS

Cf. A297826, A297836, A297837.

Sequence in context: A032372 A207967 A265413 * A103008 A124742 A152003

Adjacent sequences:  A297827 A297828 A297829 * A297831 A297832 A297833

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Feb 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:11 EDT 2019. Contains 321305 sequences. (Running on oeis4.)