login
A297791
Number of series-reduced leaf-balanced rooted trees with n nodes. Number of orderless same-trees with n nodes and all leaves equal to 1.
7
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 3, 3, 4, 3, 5, 3, 6, 4, 6, 3, 12, 3, 10, 7, 9, 6, 12, 9, 13, 16, 14, 22, 22, 24, 21, 24, 28, 14, 32, 15, 42, 20, 60, 27, 84, 44, 100, 59, 113, 74, 116, 85, 110, 97, 96, 113, 106, 149, 147, 234, 235, 377, 380, 580, 576, 838
OFFSET
1,7
COMMENTS
An unlabeled rooted tree is leaf-balanced if all branches from the same root have the same number of leaves. It is series-reduced if all positive out-degrees are greater than one.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..84
EXAMPLE
The a(13) = 5 trees: (((oo)(oo))(oooo)), ((ooooo)(ooooo)), ((ooo)(ooo)(ooo)), ((oo)(oo)(oo)(oo)), (oooooooooooo).
MATHEMATICA
alltim[n_]:=alltim[n]=If[n===1, {{}}, Join@@Function[c, Select[Union[Sort/@Tuples[alltim/@c]], And[SameQ@@(Count[#, {}, {0, Infinity}]&/@#), FreeQ[#, {_}]]&]]/@IntegerPartitions[n-1]];
Table[Length[alltim[n]], {n, 20}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 06 2018
EXTENSIONS
a(51) onward from Robert G. Wilson v, Jan 07 2018
STATUS
approved