login
A297627
Anagrexpo integers: integers N that exactly reproduce their set of digits when we form the set of exponentiation of pairs of adjacent digits, from left to right.
1
52, 152, 1052, 1152, 2152, 2513, 3152, 4152, 4316, 5152, 5201, 5212, 6152, 6213, 7152, 8152, 9152, 10152, 11052, 11152, 12152, 12513, 13152, 14152, 14316, 15152, 15201, 15212, 16152, 16213, 17152, 18152, 19152, 20521, 21052, 21152, 25103, 25113, 30251, 30621, 31052, 31152, 32519, 41052, 41152, 43106
OFFSET
1,1
COMMENTS
The sequence is infinite, since any term of the sequence can be preceded by as many 1s as needed. The name "anagrexpo integers" comes from "anagram by exponentiation". The same idea is explored by the "anagraprod integers" and the "anagrasum integers" (see "Crossrefs" section hereunder).
LINKS
EXAMPLE
a(2) = 152 reproduces the digits 1, 5 and 2 (in a different order) when the exponentiations 1^5=1 and 5^2=25 are taken. The same with a(6) = 2513, which reproduces the digits 2, 5, 1, and 3 when the exponentiations 2^5=32, 5^1=5 and 1^3=1 are taken.
MATHEMATICA
Unprotect[Power]; Power[0, 0] := 1; Protect[Power]; Select[Range[10^5], SameQ @@ {Sort@ Flatten@ Map[IntegerDigits[Power @@ #] &, Partition[#, 2, 1]], Sort@ #} &@ IntegerDigits@ # &] (* Michael De Vlieger, Jan 02 2018 *)
CROSSREFS
Sequence in context: A227703 A044384 A044765 * A049059 A345240 A292172
KEYWORD
base,nonn
AUTHOR
STATUS
approved