%I #10 Jul 21 2024 10:53:02
%S 3,24,786432,607414388859108115611648,
%T 209612726453275190455555968162055861499550948926837753219118644175379819323624127848879061204992
%N Number of maximum matchings in the n-Sierpinski tetrahedron graph.
%H Christian Sievers, <a href="/A297533/b297533.txt">Table of n, a(n) for n = 1..6</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumIndependentEdgeSet.html">Maximum Independent Edge Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a>
%o (PARI) rd(p)=if(p,pollead(p)*x^poldegree(p),0);
%o a(n)={my(s=[1,0,x,0,3*x^2]);for(k=2,n,s=vector(5,i,rd(sum(wx=0,2,sum(wy=0,2,sum(wz=0,2,sum(xy=0,2,sum(xz=0,2,sum(yz=0,2,s[1+(i>1)+(wx%2)+(wy%2)+(wz%2)]*s[1+(i>2)+(wx\2)+(xy%2)+(xz%2)]*s[1+(i>3)+(wy\2)+(xy\2)+(yz%2)]*s[1+(i>4)+(wz\2)+(xz\2)+(yz\2)])))))))));pollead([1,4,6,4,1]*s~)} \\ _Christian Sievers_, Jul 21 2024
%K nonn
%O 1,1
%A _Eric W. Weisstein_, Dec 31 2017
%E a(4) and beyond from _Christian Sievers_, Jul 21 2024