|
|
A297362
|
|
Numbers n such that (2^ord(2, n) - 1)/n is prime, where ord(2, n) is the multiplicative order of 2 (mod n).
|
|
0
|
|
|
5, 9, 21, 23, 33, 47, 51, 73, 85, 89, 93, 129, 167, 217, 223, 263, 315, 341, 381, 585, 819, 1057, 1365, 3591, 3855, 4681, 4871, 5461, 6141, 6223, 6719, 7487, 8193, 11447, 13107, 13367, 13797, 14329, 16513, 18631, 21845, 24573, 25575, 26431, 33825, 37449
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding primes are 3, 7, 3, 89, 31, 178481, 5, 7, 3, 23, 11, ...
|
|
LINKS
|
Table of n, a(n) for n=1..46.
|
|
EXAMPLE
|
5 is in the sequence since ord(2, 5) = 4 and (2^4 - 1)/5 = 3 is prime.
|
|
MATHEMATICA
|
aQ[n_] := PrimeQ[(2^MultiplicativeOrder[2, n] - 1)/n]; Select[Range[10000], aQ]
|
|
CROSSREFS
|
Cf. A002326, A165781.
Sequence in context: A273150 A273388 A273449 * A175364 A244642 A211424
Adjacent sequences: A297359 A297360 A297361 * A297363 A297364 A297365
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amiram Eldar, Dec 29 2017
|
|
STATUS
|
approved
|
|
|
|