login
A297323
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j*x^j)^k.
14
1, 1, 0, 1, -1, 0, 1, -2, -2, 0, 1, -3, -3, -1, 0, 1, -4, -3, 2, -1, 0, 1, -5, -2, 8, 4, 5, 0, 1, -6, 0, 16, 9, 16, 1, 0, 1, -7, 3, 25, 9, 18, -3, 13, 0, 1, -8, 7, 34, 0, 4, -35, 6, 4, 0, 1, -9, 12, 42, -21, -26, -90, -33, -31, 0, 0, 1, -10, 18, 48, -56, -66, -145, -56, -66, -72, 2, 0
OFFSET
0,8
FORMULA
G.f. of column k: Product_{j>=1} (1 - j*x^j)^k.
EXAMPLE
G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 5)*x^2 - (1/6)*k*(k^2 - 15*k + 20)*x^3 + (1/24)*k*(k^3 - 30*k^2 + 155*k - 150)*x^4 - (1/120)*k*(k^4 - 50*k^3 + 575*k^2 - 1750*k + 624)*x^5 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, -2, -3, -3, -2, 0, ...
0, -1, 2, 8, 16, 25, ...
0, -1, 4, 9, 9, 0, ...
0, 5, 16, 18, 4, -26, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
PROG
(PARI) first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, (1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Dec 28 2017
STATUS
approved