login
A297274
Numbers whose base-11 digits have equal down-variation and up-variation; see Comments.
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 488, 499, 510, 521
OFFSET
1,2
COMMENTS
Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
Differs after the zero from A029956 first at 1343 = 1011_11, which is not a palindrome in base 11 but has DV(1343,11) = UV(1343,11) =1. - R. J. Mathar, Jan 23 2018
LINKS
EXAMPLE
521 in base-11: 4,3,4, having DV = 1, UV = 1, so that 521 is in the sequence.
MATHEMATICA
g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
b = 11; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
Take[Flatten[Position[w, -1]], 120] (* A297273 *)
Take[Flatten[Position[w, 0]], 120] (* A297274 *)
Take[Flatten[Position[w, 1]], 120] (* A297275 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 16 2018
STATUS
approved