This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297217 Most common value of the number of divisors function among all composites up to composite(n) inclusive, or 0 if there is a tie. 1
 3, 0, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Is a(n) = 4 for all n > 4? LINKS EXAMPLE n  |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 | 10 | 11 | 12 -------------------------------------------------------------------------   A002808(n) |  4 |  6 |  8 |  9 | 10 | 12 | 14 | 15 | 16 | 18 | 20 | 21 ------------------------------------------------------------------------- A035004(n+1) |  3 |  4 |  4 |  3 |  4 |  6 |  4 |  4 |  5 |  6 |  6 |  4 -------------------------------------------------------------------------         a(n) |  3 |  0 |  4 |  0 |  4 |  4 |  4 |  4 |  4 |  4 |  4 |  4 PROG (PARI) composite(n) = my(i=0); forcomposite(c=1, , i++; if(i==n, return(c))) mcv(v) = my(w=vecsort(v, , 8), count=vector(#w), ind=0, i=0); for(x=1, #w, for(y=1, #v, if(w[x]==v[y], count[x]++))); for(k=1, #count, if(count[k]==vecmax(count), ind=k; i++)); if(i > 1, return(0), return(w[ind])) a(n) = my(v=[]); for(k=1, n, v=concat(v, numdiv(composite(k)))); mcv(v) CROSSREFS Cf. A002808, A035004. Sequence in context: A004588 A272474 A308717 * A218859 A246691 A066705 Adjacent sequences:  A297214 A297215 A297216 * A297218 A297219 A297220 KEYWORD nonn,easy AUTHOR Felix FrÃ¶hlich, Mar 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 22:53 EDT 2019. Contains 327147 sequences. (Running on oeis4.)