This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297199 a(n) = number of partitions of n into consecutive positive cubes. 2
 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,216 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(A217843(n)) >= 1 for n > 1. a(n) >= 2 for n in A265845. - Robert Israel, Jan 15 2018 EXAMPLE 1 = 1^3,                   so   a(1) = 1.     8 = 2^3,                   so   a(8) = 1.     9 = 1^3 + 2^3,             so   a(9) = 1.    27 = 3^3,                   so  a(27) = 1.    35 = 2^3 + 3^3,             so  a(35) = 1.    36 = 1^3 + 2^3 + 3^3,       so  a(36) = 1.    64 = 4^3,                   so  a(64) = 1.    91 = 3^3 + 4^3,             so  a(91) = 1.    99 = 2^3 + 3^3 + 4^3,       so  a(99) = 1.   100 = 1^3 + 2^3 + 3^3 + 4^3, so a(100) = 1. MAPLE N:= 200: # to get a(1)..a(N) F:= (a, b) -> (b^2*(b+1)^2-a^2*(a-1)^2)/4: A:= Vector(N): for b from 1 to floor(N^(1/3)) do   for a from b to 1 by -1 do      v:= F(a, b);      if v > N then break fi;      A[v]:= A[v]+1; od od: convert(A, list); # Robert Israel, Jan 15 2018, corrected Jan 29 2018 CROSSREFS Cf. A000578, A001227, A217843, A265845, A296338. Sequence in context: A058342 A205808 A238897 * A185117 A014045 A015269 Adjacent sequences:  A297196 A297197 A297198 * A297200 A297201 A297202 KEYWORD nonn AUTHOR Seiichi Manyama, Jan 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 11:46 EDT 2019. Contains 321448 sequences. (Running on oeis4.)