login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297199 a(n) = number of partitions of n into consecutive positive cubes. 2
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,216

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(A217843(n)) >= 1 for n > 1.

a(n) >= 2 for n in A265845. - Robert Israel, Jan 15 2018

EXAMPLE

    1 = 1^3,                   so   a(1) = 1.

    8 = 2^3,                   so   a(8) = 1.

    9 = 1^3 + 2^3,             so   a(9) = 1.

   27 = 3^3,                   so  a(27) = 1.

   35 = 2^3 + 3^3,             so  a(35) = 1.

   36 = 1^3 + 2^3 + 3^3,       so  a(36) = 1.

   64 = 4^3,                   so  a(64) = 1.

   91 = 3^3 + 4^3,             so  a(91) = 1.

   99 = 2^3 + 3^3 + 4^3,       so  a(99) = 1.

  100 = 1^3 + 2^3 + 3^3 + 4^3, so a(100) = 1.

MAPLE

N:= 200: # to get a(1)..a(N)

F:= (a, b) -> (b^2*(b+1)^2-a^2*(a-1)^2)/4:

A:= Vector(N):

for b from 1 to floor(N^(1/3)) do

  for a from b to 1 by -1 do

     v:= F(a, b);

     if v > N then break fi;

     A[v]:= A[v]+1;

od od:

convert(A, list); # Robert Israel, Jan 15 2018, corrected Jan 29 2018

CROSSREFS

Cf. A000578, A001227, A217843, A265845, A296338.

Sequence in context: A058342 A205808 A238897 * A185117 A014045 A015269

Adjacent sequences:  A297196 A297197 A297198 * A297200 A297201 A297202

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Jan 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 11:46 EDT 2019. Contains 321448 sequences. (Running on oeis4.)