login
A297146
Numbers having an up-first zigzag pattern in base 10; see Comments.
17
12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145
OFFSET
1,1
COMMENTS
A number n having base-b digits d(m), d(m-1),..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297146-A297148 partition the natural numbers. In the following guide, column four, "complement" means the sequence of natural numbers not in the corresponding sequences in columns 2 and 3.
***
Base up-first down-first complement
2 (none) A000975 A107907
EXAMPLE
Base-10 digits of 59898: 5,9,8,9,8, with pattern UDUD, so that 59898 is in the sequence.
MATHEMATICA
a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
b = 10; t = Table[a[n, b], {n, 1, 10*z}];
u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297146 *)
v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297147 *)
Complement[Range[z], Union[u, v]] (* A297148 *)
CROSSREFS
Sequence in context: A297272 A071589 A296713 * A267761 A324322 A083826
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 15 2018
STATUS
approved