%I #17 Dec 28 2017 07:12:41
%S 33703,359788,7410526,55075448,823614244,2238479798,11171417938,
%T 21787752284,68501592808,275166205414,410273756384,1185793577918,
%U 2195777500954,2921567789828,4984278115408,10240918233838,19486182370804,23813901313094,41782891225388
%N a(n) = (1/2) * Sum_{|k|<2*sqrt(p)} A297122(4*p-k^2) where p is n-th prime.
%H Seiichi Manyama, <a href="/A297127/b297127.txt">Table of n, a(n) for n = 1..1000</a>
%H Olivier Rozier, <a href="http://www.ipgp.fr/~rozier/math/raman.html">Ramanujan's tau function</a>
%F A076847(n) = A000594(prime(n)) = a(n) - A297123(prime(n)) .
%e a(2) = (1/2) * (32768 + 2*16807 + 2*512) = 33703.
%e tau(2) = 33703 - 33727 = -24.
%e a(3) = (1/2) * (331776 + 2*161051 + 2*32768 + 2*81) = 359788.
%e tau(3) = 359788 - 359536 = 252.
%Y Cf. A000594 (tau(n)), A076847, A297122, A297123.
%K nonn
%O 1,1
%A _Seiichi Manyama_, Dec 26 2017