The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296999 Number of nonequivalent (mod D_8) ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column. 1
 0, 1, 17, 226, 1550, 7221, 26120, 78484, 206242, 486640, 1056377, 2137506, 4085167, 7430276, 12964014, 21801632, 35520743, 56249658, 86880957, 131186720, 194133425, 282024809, 402949496, 566950056, 786640454, 1077397347, 1458190435, 1951789266, 2585856152, 3393157995 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Rotations and reflections of placements are not counted. If they are to be counted see A296998. The condition of placements is also known as "no 3-term arithmetic progressions". LINKS Heinrich Ludwig, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-1,-4,4,-4,5,1,-5,6,-10,8,-8,10,-6,5,-1,-5,4,-4,4,1,-3,1). FORMULA a(n) = (n^8 - 6*n^6 - 12*n^5 + 64*n^4 + 8*n^3 - 136*n^2 + (n == 1 (mod 2))*(14*n^4 - 96*n^3 + 162*n^2 - 92*n + 93))/192 + (n == 2 (mod 6))*n/6 + (n == 2 (mod 4))*n/4 + (n == 5 (mod 6))*(n + 1)/6. a(n) = (n^8 - 6*n^6 - 12*n^5)/192 + b(n) + c(n), where   b(n) = (64*n^4 + 8*n^3 - 136*n^2)/192  for n even,   b(n) = (78*n^4 - 88*n^3 + 26*n^2 - 92*n + 93)/192  for n odd,   c(n) = 0          for n == 0, 1, 3, 4, 7, 9  (mod 12),   c(n) = n/4        for n == 6, 10             (mod 12),   c(n) = n/6        for n == 8                 (mod 12),   c(n) = 5/12*n     for n == 2                 (mod 12),   c(n) = (n + 1)/6  for n == 5, 11             (mod 12). Conjectures from Colin Barker, Jan 21 2018: (Start) G.f.: x^2*(1 + 14*x + 176*x^2 + 893*x^3 + 2861*x^4 + 6847*x^5 + 12704*x^6 + 20412*x^7 + 27052*x^8 + 33142*x^9 + 33910*x^10 + 33289*x^11 + 26586*x^12 + 20709*x^13 + 12212*x^14 + 7178*x^15 + 2639*x^16 + 1094*x^17 + 134*x^18 + 68*x^19 - 3*x^20 + 2*x^21) / ((1 - x)^9*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)^2). a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 4*a(n-4) - 4*a(n-5) + 5*a(n-6) + a(n-7) - 5*a(n-8) + 6*a(n-9) - 10*a(n-10) + 8*a(n-11) - 8*a(n-13) + 10*a(n-14) - 6*a(n-15) + 5*a(n-16) - a(n-17) - 5*a(n-18) + 4*a(n-19) - 4*a(n-20) + 4*a(n-21) + a(n-22) - 3*a(n-23) + a(n-24) for n>24. (End) MATHEMATICA Array[(#^8 - 6 #^6 - 12 #^5 + 64 #^4 + 8 #^3 - 136 #^2 + Boole[OddQ@ #] (14 #^4 - 96 #^3 + 162 #^2 - 92 # + 93))/192 + Boole[Mod[#, 6] == 2] #/6 + Boole[Mod[#, 4] == 2] #/4 + Boole[Mod[#, 6] == 5] (# + 1)/6 &, 30] (* Michael De Vlieger, Jan 21 2018 *) CROSSREFS Cf. A014409, A296996, A296998. Sequence in context: A016227 A155001 A012095 * A140842 A087608 A078946 Adjacent sequences:  A296996 A296997 A296998 * A297000 A297001 A297002 KEYWORD nonn,easy AUTHOR Heinrich Ludwig, Jan 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 05:26 EDT 2021. Contains 343105 sequences. (Running on oeis4.)