login
A296974
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 2, 4 or 5 king-move neighboring 1s.
8
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 21, 31, 21, 1, 1, 59, 78, 78, 59, 1, 1, 145, 295, 274, 295, 145, 1, 1, 323, 959, 1418, 1418, 959, 323, 1, 1, 793, 2958, 6573, 13543, 6573, 2958, 793, 1, 1, 1939, 9835, 29590, 101352, 101352, 29590, 9835, 1939, 1, 1, 4561, 32104, 140427
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1......1........1..........1...........1.............1
.1....5....11.....21.......59........145.........323...........793
.1...11....31.....78......295........959........2958..........9835
.1...21....78....274.....1418.......6573.......29590........140427
.1...59...295...1418....13543.....101352......711867.......5662206
.1..145...959...6573...101352....1154298....12662763.....158665988
.1..323..2958..29590...711867...12662763...222799447....4440619952
.1..793..9835.140427..5662206..158665988..4440619952..143300513381
.1.1939.32104.665654.44485796.1952861999.87137716095.4520161193750
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-2) +6*a(n-3) -4*a(n-4) +2*a(n-5)
k=3: [order 17]
k=4: [order 48]
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..0. .1..1..0..0. .0..0..0..1. .0..1..0..0
..0..1..0..0. .1..1..0..0. .0..1..0..0. .0..1..1..1. .1..0..1..0
..0..1..1..0. .0..0..0..0. .1..0..1..0. .0..0..1..1. .1..0..1..0
..0..1..1..1. .0..0..1..0. .0..1..0..0. .0..0..1..0. .0..1..0..0
..0..1..0..0. .0..1..1..0. .0..0..0..0. .0..1..1..0. .0..1..1..0
CROSSREFS
Sequence in context: A181370 A119307 A296039 * A146954 A174949 A174861
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 22 2017
STATUS
approved