%I #4 Dec 22 2017 12:53:24
%S 1,21,78,274,1418,6573,29590,140427,665654,3151207,15051798,72121126,
%T 346235034,1666584401,8036053901,38798502247,187532267289,
%U 907211512520,4391645429788,21270391711148,103062868309303,499537429714748
%N Number of nX4 0..1 arrays with each 1 adjacent to 2, 4 or 5 king-move neighboring 1s.
%C Column 4 of A296974.
%H R. H. Hardin, <a href="/A296970/b296970.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 10*a(n-1) -36*a(n-2) +129*a(n-3) -625*a(n-4) +1707*a(n-5) -4139*a(n-6) +14241*a(n-7) -30278*a(n-8) +57436*a(n-9) -157942*a(n-10) +260716*a(n-11) -416250*a(n-12) +970355*a(n-13) -1218733*a(n-14) +1822383*a(n-15) -3627381*a(n-16) +3315212*a(n-17) -5341031*a(n-18) +8300639*a(n-19) -4671832*a(n-20) +9735258*a(n-21) -9594606*a(n-22) +564570*a(n-23) -9598741*a(n-24) +1951671*a(n-25) +6730294*a(n-26) +4050396*a(n-27) +6388498*a(n-28) -7314529*a(n-29) +66459*a(n-30) -5177819*a(n-31) +3280179*a(n-32) -733193*a(n-33) +1937505*a(n-34) -2839158*a(n-35) +1766381*a(n-36) +88871*a(n-37) +29557*a(n-38) +987927*a(n-39) -1713924*a(n-40) +1318824*a(n-41) -525443*a(n-42) +79829*a(n-43) +26119*a(n-44) -19123*a(n-45) +5024*a(n-46) -528*a(n-47) +4*a(n-48)
%e Some solutions for n=5
%e ..0..0..0..1. .1..1..1..0. .1..1..0..0. .1..0..0..0. .0..1..1..1
%e ..0..0..1..1. .1..0..1..0. .1..0..0..0. .1..1..1..0. .0..1..0..1
%e ..0..0..0..0. .0..0..0..0. .1..1..0..0. .1..1..0..0. .0..0..0..0
%e ..1..1..0..0. .0..0..0..0. .1..1..1..0. .0..1..0..0. .0..0..0..1
%e ..0..1..0..0. .0..0..0..0. .1..0..0..0. .0..1..1..0. .0..0..1..1
%Y Cf. A296974.
%K nonn
%O 1,2
%A _R. H. Hardin_, Dec 22 2017