%I #19 Nov 17 2023 07:34:04
%S 5,19,29,37,41,43,47,59,61,67,73,83,97,103,109,113,127,151,173,179,
%T 181,191,193,197,223,233,239,241,251,263,269,271,277,307,313,317,331,
%U 337,359,383,397,401,443,449,463,467,491,521,523,541,563,587,599,601,617,631
%N Inert rational primes in the field Q(sqrt(-17)).
%C Primes that are congruent to 5, 15, 19, 29, 35, 37, 41, 43, 45, 47, 55, 57, 59, 61, 65, or 67 mod 68. - _Amiram Eldar_, Nov 17 2023
%H Amiram Eldar, <a href="/A296930/b296930.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>.
%p Load the Maple program HH given in A296920. Then run HH(-17, 200); This produces A296929, A296930, A296931.
%t Select[Prime[Range[115]], KroneckerSymbol[-17, #] == -1 &] (* _Amiram Eldar_, Nov 17 2023 *)
%Y Cf. A296920, A296929, A296931.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Dec 26 2017