%I #11 Jan 22 2023 20:50:40
%S 10,11,19,20,23,31,32,35,37,38,58,59,62,64,65,71,73,74,77,91,92,93,94,
%T 95,98,100,101,104,105,106,107,112,113,116,118,119,154,155,158,172,
%U 173,174,175,176,179,181,182,185,186,187,188,193,194,197,199,200,208
%N Numbers whose base-3 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.
%C A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296861-A296863 partition the natural numbers. See the guides at A296882 and A296712.
%H Clark Kimberling, <a href="/A296862/b296862.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-3 digits of 208 are 2, 1, 2, 0, 1; here #(pits) = 2 and #(peaks) = 1, so 208 is in the sequence.
%t z = 200; b = 3;
%t d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
%t Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296861 *)
%t Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296862 *)
%t Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296863 *)
%Y Cf. A296882, A296712, A296861, A296863.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 09 2018