login
A296843
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n+1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, b(3) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
3
1, 2, 9, 18, 35, 63, 109, 184, 306, 504, 825, 1345, 2187, 3551, 5758, 9330, 15110, 24463, 39597, 64085, 103708, 167820, 271556, 439405, 710991, 1150427, 1861450, 3011910, 4873394, 7885340, 12758771, 20644149, 33402959, 54047148, 87450148, 141497338
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, b(3) = 6
a(2) = a(0) + a(1) + b(3) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, ...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; b[3] = 6;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n + 1];
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296843 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 12 2018
STATUS
approved