The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296796 Numbers k such that k is the altitude of a Heronian triangle with sides m - 11, m, m + 11. 4
 12, 15, 33, 63, 72, 132, 240, 273, 495, 897, 1020, 1848, 3348, 3807, 6897, 12495, 14208, 25740, 46632, 53025, 96063, 174033, 197892, 358512, 649500, 738543, 1337985, 2423967, 2756280, 4993428, 9046368, 10286577, 18635727, 33761505, 38390028, 69549480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) gives the values of y satisfying 3*x^2 - y^2 = 363; corresponding x values are given by A296795. a(n)/3 is the radius of the inscribed circle. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-1). FORMULA From Colin Barker, Dec 22 2017: (Start) G.f.: 3*(4 + 5*x + 11*x^2 + 5*x^3 + 4*x^4) / (1 - 4*x^3 + x^6). a(n) = 4*a(n-3) - a(n-6) for n>5. (End) EXAMPLE If the sides are 17, 28, 39 the triangle has the altitude 15 against 28 and is a part of the Pythagorean triangle with the sides 15, 36, 39, so 15 is a term. MATHEMATICA CoefficientList[Series[3 (4 + 5 x + 11 x^2 + 5 x^3 + 4 x^4)/(1 - 4 x^3 + x^6), {x, 0, 35}], x] (* Michael De Vlieger, Dec 22 2017 *) PROG (PARI) Vec(3*(4 + 5*x + 11*x^2 + 5*x^3 + 4*x^4) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 22 2017 CROSSREFS Sequence in context: A134221 A179148 A194234 * A161917 A065150 A277082 Adjacent sequences:  A296793 A296794 A296795 * A296797 A296798 A296799 KEYWORD nonn,easy AUTHOR Sture Sjöstedt, Dec 20 2017 EXTENSIONS More terms from Colin Barker, Dec 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 01:36 EDT 2021. Contains 342934 sequences. (Running on oeis4.)