login
A296764
Numbers whose base-20 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
7
20, 40, 41, 60, 61, 62, 80, 81, 82, 83, 100, 101, 102, 103, 104, 120, 121, 122, 123, 124, 125, 140, 141, 142, 143, 144, 145, 146, 160, 161, 162, 163, 164, 165, 166, 167, 180, 181, 182, 183, 184, 185, 186, 187, 188, 200, 201, 202, 203, 204, 205, 206, 207, 208
OFFSET
1,1
COMMENTS
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296762-A296764 partition the natural numbers. See the guide at A296712.
LINKS
EXAMPLE
The base-20 digits of 208 are 10,8; here #(rises) = 0 and #(falls) = 2, so 208 is in the sequence.
MATHEMATICA
z = 200; b = 20; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296762 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296763 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296764 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 08 2018
STATUS
approved