%I #7 Jan 27 2023 19:26:33
%S 14,28,29,42,43,44,56,57,58,59,70,71,72,73,74,84,85,86,87,88,89,98,99,
%T 100,101,102,103,104,112,113,114,115,116,117,118,119,126,127,128,129,
%U 130,131,132,133,134,140,141,142,143,144,145,146,147,148,149,154
%N Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296753-A296755 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296755/b296755.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-14 digits of 10^9 are 9, 6, 11, 4, 11, 6, 11, 6; here #(rises) = 3 and #(falls) = 4, so 10^9 is in the sequence.
%t z = 200; b = 14; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296753 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296754 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296755 *)
%Y Cf. A296753, A296754, A296712.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 08 2018