

A296754


Numbers n whose base14 digits d(m), d(m1), ..., d(0) have #(rises) > #(falls); see Comments.


5



16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 67, 68, 69, 76, 77, 78, 79, 80, 81, 82, 83, 91, 92, 93, 94, 95, 96, 97, 106, 107, 108, 109, 110, 111
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296753A296755 partition the natural numbers. See the guide at A296712.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


EXAMPLE

The base14 digits of 10000000 are 1,12,0,6,0,8; here #(rises) = 3 and #(falls) = 2, so that 10000000 is in the sequence.


MATHEMATICA

z = 200; b = 14; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], 1] == Count[d[#], 1] &] (* A296753 *)
Select[Range [z], Count[d[#], 1] < Count[d[#], 1] &] (* A296754 *)
Select[Range [z], Count[d[#], 1] > Count[d[#], 1] &] (* A296755 *)


CROSSREFS

Cf. A296753, A296755, A296712.
Sequence in context: A248501 A115420 A250038 * A297284 A270043 A209726
Adjacent sequences: A296751 A296752 A296753 * A296755 A296756 A296757


KEYWORD

nonn,base,easy


AUTHOR

Clark Kimberling, Jan 08 2018


STATUS

approved



