%I #7 Jan 27 2023 19:25:31
%S 12,24,25,36,37,38,48,49,50,51,60,61,62,63,64,72,73,74,75,76,77,84,85,
%T 86,87,88,89,90,96,97,98,99,100,101,102,103,108,109,110,111,112,113,
%U 114,115,116,120,121,122,123,124,125,126,127,128,129,132,133,134
%N Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296747-A296749 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296749/b296749.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-12 digits of 134 are 11,2; here #(rises) = 0 and #(falls) = 2, so 134 is in the sequence.
%t z = 200; b = 12; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296747 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296748 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296749 *)
%Y Cf. A296747, A296748, A296712.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 08 2018