%I #7 Jan 27 2023 19:25:22
%S 14,15,16,17,18,19,20,21,22,23,27,28,29,30,31,32,33,34,35,40,41,42,43,
%T 44,45,46,47,53,54,55,56,57,58,59,66,67,68,69,70,71,79,80,81,82,83,92,
%U 93,94,95,105,106,107,118,119,131,158,159,160,161,162,163
%N Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296747-A296749 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296748/b296748.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-12 digits of 163 are 1,1,7; here #(rises) = 1 and #(falls) = 0, so 163 is in the sequence.
%t z = 200; b = 12; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296747 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296748 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296749 *)
%Y Cf. A296747, A296749, A296712.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 08 2018