Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Jan 27 2023 19:24:47
%S 1,2,3,4,5,6,7,8,9,10,12,24,36,48,60,72,84,96,108,120,122,123,124,125,
%T 126,127,128,129,130,131,133,143,144,154,155,156,165,166,167,168,176,
%U 177,178,179,180,187,188,189,190,191,192,198,199,200,201,202,203
%N Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296744/b296744.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-11 digits of 203 are 1,7,5; here #(rises) = 1 and #(falls) = 1, so 203 is in the sequence.
%t z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296745 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296746 *)
%Y Cf. A296745, A296746, A296712.
%K nonn,base,easy
%O 1,2
%A _Clark Kimberling_, Jan 08 2018