%I #4 Dec 19 2017 13:41:40
%S 7,88,575,4251,34086,261354,2009116,15561333,120192735,928063213,
%T 7170507397,55393347969,427898271402,3305552917344,25535557476919,
%U 197262162029691,1523854986101600,11771817599685573,90937529551566886
%N Number of nX4 0..1 arrays with each 1 adjacent to 1, 2 or 4 king-move neighboring 1s.
%C Column 4 of A296739.
%H R. H. Hardin, <a href="/A296735/b296735.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-1) +2*a(n-2) +71*a(n-3) -285*a(n-4) -276*a(n-5) -1210*a(n-6) +2664*a(n-7) +4522*a(n-8) +11088*a(n-9) -5299*a(n-10) -21842*a(n-11) -48241*a(n-12) -17624*a(n-13) +28140*a(n-14) +76543*a(n-15) +54714*a(n-16) -22710*a(n-17) -80269*a(n-18) -42179*a(n-19) -5950*a(n-20) +123758*a(n-21) +114033*a(n-22) -22760*a(n-23) -9078*a(n-24) +42875*a(n-25) -24291*a(n-26) -24731*a(n-27) +9331*a(n-28) -2841*a(n-29) -5019*a(n-30) +1549*a(n-31) +823*a(n-32) -230*a(n-33) -20*a(n-34) +24*a(n-35)
%e Some solutions for n=5
%e ..0..1..1..0. .0..0..1..1. .0..0..0..0. .0..1..1..0. .1..0..0..1
%e ..1..0..0..0. .1..1..0..0. .1..1..1..0. .1..0..0..0. .0..1..1..0
%e ..0..0..1..1. .0..1..1..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
%e ..0..0..0..0. .1..0..0..0. .1..1..1..0. .0..1..0..0. .0..1..0..1
%e ..1..1..1..0. .1..0..1..1. .0..1..1..1. .0..1..0..0. .0..1..1..1
%Y Cf. A296739.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 19 2017