%I #7 Jan 27 2023 19:23:27
%S 8,16,17,24,25,26,32,33,34,35,40,41,42,43,44,48,49,50,51,52,53,56,57,
%T 58,59,60,61,62,64,72,128,136,137,144,145,192,200,201,208,209,210,216,
%U 217,218,256,264,265,272,273,274,280,281,282,283,288,289,290,291
%N Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296706-A296707 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296708/b296708.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-8 digits of 291 are 4,4,3; here #(rises) = 0 and #(falls) = 1, so 291 is in the sequence.
%t z = 200; b = 8; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296706 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296707 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296708 *)
%Y Cf. A296707, A296708, A296712.
%K nonn,easy,base
%O 1,1
%A _Clark Kimberling_, Jan 08 2018