Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Jan 27 2023 19:10:12
%S 10,11,12,13,14,15,19,20,21,22,23,28,29,30,31,37,38,39,46,47,55,74,75,
%T 76,77,78,79,82,83,84,85,86,87,91,92,93,94,95,100,101,102,103,109,110,
%U 111,118,119,127,147,148,149,150,151,155,156,157,158,159,164
%N Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296706-A296707 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296707/b296707.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-8 digits of 164 are 2,4,4; here #(rises) = 1 and #(falls) = 0, so 164 is in the sequence.
%t z = 200; b = 8; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296706 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296707 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296708 *)
%Y Cf. A296708, A296709, A296712.
%K nonn,easy,base
%O 1,1
%A _Clark Kimberling_, Jan 08 2018