%I #7 Jan 27 2023 19:22:38
%S 9,10,11,12,13,17,18,19,20,25,26,27,33,34,41,58,59,60,61,62,65,66,67,
%T 68,69,73,74,75,76,81,82,83,89,90,97,115,116,117,118,122,123,124,125,
%U 130,131,132,138,139,146,172,173,174,179,180,181,187,188,195,229
%N Numbers whose base-7 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296703-A296705 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296704/b296704.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-7 digits of 229 are 4,4,5; here #(rises) = 1 and #(falls) = 0, so 229 is in the sequence.
%t z = 200; b = 7; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296703 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296704 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296705 *)
%Y Cf. A296704, A296705, A296712.
%K nonn,easy,base
%O 1,1
%A _Clark Kimberling_, Jan 08 2018