login
A296702
Numbers whose base-6 digits d(m), d(m-1), ... d(0) have #(rises) < #(falls); see Comments.
4
6, 12, 13, 18, 19, 20, 24, 25, 26, 27, 30, 31, 32, 33, 34, 36, 42, 72, 78, 79, 84, 85, 108, 114, 115, 120, 121, 122, 126, 127, 128, 144, 150, 151, 156, 157, 158, 162, 163, 164, 165, 168, 169, 170, 171, 180, 186, 187, 192, 193, 194, 198, 199, 200, 201, 204
OFFSET
1,1
COMMENTS
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296700-A296702 partition the natural numbers. See the guide at A296712.
LINKS
EXAMPLE
The base-6 digits of 224 are 5,4,0; here #(rises) = 0 and #(falls) = 2, so 204 is in the sequence.
MATHEMATICA
z = 200; b = 6; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296700 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296701 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296702 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 07 2018
STATUS
approved