%I #7 Jan 28 2023 19:37:29
%S 6,7,11,22,23,26,27,31,43,47,70,71,75,86,87,90,91,95,97,98,99,102,103,
%T 106,107,108,109,110,111,113,114,115,118,119,123,127,134,135,139,155,
%U 171,175,177,178,179,182,183,187,191,198,199,203,219,262,263,267
%N Numbers whose base-4 digits d(m), d(m-1), ... d(0) have #(rises) > #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296694-A296696 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296695/b296695.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-4 digits of 267 are 1,0,0,2,3; here #(rises) = 2 and #(falls) = 1, so 267 is in the sequence.
%t z = 200; b = 4; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296694 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296695 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296696 *)
%Y Cf. A296694, A296696, A296712.
%K nonn,base
%O 1,1
%A _Clark Kimberling_, Dec 21 2017