login
A296657
Triangle whose n-th row is the concatenated sequence of all binary Lyndon words of length n in lexicographic order.
4
0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1
OFFSET
1
FORMULA
Row n is a concatenation of A001037(n) Lyndon words with total length A027375(n).
EXAMPLE
Triangle of binary Lyndon words begins:
0,1,
01,
001,011,
0001,0011,0111,
00001,00011,00101,00111,01011,01111,
000001,000011,000101,000111,001011,001101,001111,010111,011111.
MATHEMATICA
LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
Table[Select[Tuples[{0, 1}, n], LyndonQ], {n, 5}]
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Dec 18 2017
STATUS
approved