login
Number of non-averaging permutations of [n] with first element ceiling(n/2).
2

%I #17 Jun 02 2018 10:38:12

%S 1,1,1,2,3,6,13,32,51,76,161,386,903,2280,5018,12828,19720,27656,

%T 48788,100120,220686,537208,1258242,3123166,7056165,17189752,35968308,

%U 82137764,189847917,509880208,1322092262,3807727932,5678509066,7721623440,13293899416,23650787296

%N Number of non-averaging permutations of [n] with first element ceiling(n/2).

%C A non-averaging permutation avoids any 3-term arithmetic progression.

%C a(0) = 1 by convention.

%H Alois P. Heinz, <a href="/A296531/b296531.txt">Table of n, a(n) for n = 0..99</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NonaveragingSequence.html">Nonaveraging Sequence</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>

%H <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a>

%F a(n) = A296529(n,ceiling(n/2)).

%e a(5) = 6: 31254, 31524, 31542, 35124, 35142, 35412.

%e a(6) = 13: 312564, 315264, 315426, 315462, 315624, 351264, 351426, 351462, 351624, 354126, 354162, 354612, 356124.

%p b:= proc(s) option remember; local n, r, ok, i, j, k;

%p if nops(s) = 1 then 1

%p else n, r:= max(s), 0;

%p for j in s minus {n} do ok, i, k:= true, j-1, j+1;

%p while ok and i>=0 and k<n do ok, i, k:=

%p not i in s xor k in s, i-1, k+1 od;

%p r:= r+ `if`(ok, b(s minus {j}), 0)

%p od; r

%p fi

%p end:

%p a:= n-> b({$0..n} minus {ceil(n/2)-1}):

%p seq(a(n), n=0..25);

%t b[s_] := b[s] = Module[{n = Max[s], r = 0, ok, i, j, k}, If[Length[s] == 1, 1, Do[{ok, i, k} = {True, j - 1, j + 1}; While[ok && i >= 0 && k < n, {ok, i, k} = {FreeQ[s, i] ~Xor~ MemberQ[s, k], i - 1, k + 1}]; r = r + If[ok, b[s ~Complement~ {j}], 0], {j, s ~Complement~ {n}}]; r]];

%t a[n_] := b[Complement[Range[0, n], {Ceiling[n/2] - 1}]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *)

%Y Cf. A003407, A292523, A296529.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Dec 14 2017