login
A296525
Maximal diameter of connected k-regular graphs on 2*n nodes written as array T(n,k), 2 <= k < 2*n.
6
2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 2, 5, 5, 3, 2, 2, 2, 2, 1, 6, 6, 4, 3, 2, 2, 2, 2, 2, 1, 7, 8, 5, 5, 3, 2, 2, 2, 2, 2, 2, 1, 8, 9, 7, 5
OFFSET
2,1
COMMENTS
The results were found by applying the Floyd-Warshall algorithm to the output of Markus Meringer's GenReg program.
LINKS
L. Caccetta, W. F. Smyth Graphs of maximum diameter, Discrete Mathematics, Volume 102, Issue 2, 20 May 1992, Pages 121-141.
M. Meringer, Regular Graphs.
M. Meringer, GenReg, Generation of regular graphs.
EXAMPLE
Table starts:
Degree = 2 3 4 5 6 7 8 9
n= 4 : 2 1
n= 6 : 3 2 2 1
n= 8 : 4 3 2 2 2 1
n=10 : 5 5 3 2 2 2 2 1
...
See example in A296526 for a complete illustration of the irregular table.
CROSSREFS
Cf. A068934, A294732 (2nd column of table), A294733, A296524, A296526, A296621.
Sequence in context: A272911 A371014 A284267 * A333766 A333226 A175548
KEYWORD
nonn,tabf,more,hard
AUTHOR
Hugo Pfoertner, Dec 14 2017
EXTENSIONS
a(46) corresponding to the quintic graph on 16 nodes from Hugo Pfoertner, Dec 19 2017
STATUS
approved