The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296466 Expansion of e.g.f. arcsinh(arcsin(x)) (odd powers only). 7
 1, 0, 8, 56, 8000, 342144, 68623488, 8295676416, 2411783847936, 584142614728704, 240810283258527744, 96772676958798741504, 54867909992513301282816, 32661008325245409302937600, 24691868812821871169667072000, 20243305132513358736699378892800, 19829947398943934886214249532620800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: arcsin(arcsinh(x)) (odd powers only, absolute values). E.g.f.: log(sqrt(1 - log(i*x + sqrt(1 - x^2))^2) - i*log(i*x + sqrt(1 - x^2))), where i is the imaginary unit (odd powers only). a(n) ~ 2 * (2*n)! / sqrt(Pi*(4 + Pi^2)*n). - Vaclav Kotesovec, Dec 13 2017 EXAMPLE arcsinh(arcsin(x)) = x/1! + 8*x^5/5! + 56*x^7/7! + 8000*x^9/9! + 342144*x^11/11! + 68623488*x^13/13! + ... MATHEMATICA nmax = 17; Table[(CoefficientList[Series[ArcSinh[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}] nmax = 17; Table[(CoefficientList[Series[Log[Sqrt[1 - Log[I x + Sqrt[1 - x^2]]^2] - I Log[I x + Sqrt[1 - x^2]]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}] CROSSREFS Cf. A001818, A003722, A012248, A296464. Sequence in context: A154411 A105850 A009089 * A202863 A244958 A043071 Adjacent sequences:  A296463 A296464 A296465 * A296467 A296468 A296469 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 11:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)