login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296450 Integers N that yield exactly 10 different digits when all products of two successive digits of N are considered. 1
1633956, 1633965, 1659336, 1659933, 1693365, 1775428, 1775442, 1778425, 1783365, 1853394, 1853397, 1923956, 1923965, 1932956, 1932965, 1936690, 1936940, 1936970, 1942593, 1942598, 1952493, 1952498, 1963940, 1963970, 1966390, 1986532, 2335689, 2336593, 2336598, 2339563, 2339956, 2339965 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

nDigits   Count      Min          Max

-------   -----   ----------   ----------

   6          0

   7        286      1633956      9985197

   8       1254     11561774     99851332

   9       1708    113245177    985113324

  10        468   1123315817   9185132117

  11          0

There are no 6-digit or 11-digit integers that produce the digits 0 to 9 by multiplication of two contiguous digits of N. The smallest such integer is 1633956; the largest one is 9185132117; the sequence has 3716 terms.

LINKS

Lars Blomberg, Table of n, a(n) for n = 1..3716

EXAMPLE

The first term is 1633956. The successive products of two contiguous digits of 1633956 are 1*6=6, 6*3=18, 3*3=9, 3*9=27, 9*5=45, 5*6=30. We see that 6, 18, 9, 27, 45 and 30 include all digits 0 to 9, none being repeated.

CROSSREFS

Sequence in context: A173428 A015334 A015377 * A255042 A255035 A256953

Adjacent sequences:  A296447 A296448 A296449 * A296451 A296452 A296453

KEYWORD

nonn,base,fini

AUTHOR

Eric Angelini and Lars Blomberg, Dec 13 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 06:48 EDT 2019. Contains 322209 sequences. (Running on oeis4.)