login
A296313
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 3 or 6 king-move neighboring 1s.
6
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 6, 7, 7, 6, 1, 1, 9, 13, 10, 13, 9, 1, 1, 13, 23, 23, 23, 23, 13, 1, 1, 19, 37, 45, 68, 45, 37, 19, 1, 1, 28, 63, 76, 162, 162, 76, 63, 28, 1, 1, 41, 109, 150, 343, 479, 343, 150, 109, 41, 1, 1, 60, 183, 293, 864, 1198, 1198, 864, 293, 183
OFFSET
1,5
COMMENTS
Table starts
.1..1...1...1....1.....1.....1......1.......1.......1........1.........1
.1..2...3...4....6.....9....13.....19......28......41.......60........88
.1..3...5...7...13....23....37.....63.....109.....183......309.......527
.1..4...7..10...23....45....76....150.....293.....532.....1010......1942
.1..6..13..23...68...162...343....864....2075....4715....11332.....27032
.1..9..23..45..162...479..1198...3534...10374...28464....80600....233023
.1.13..37..76..343..1198..3300..11494...40212..124949...411819...1420725
.1.19..63.150..864..3534.11494..49634..205982..764169..3069413..12612285
.1.28.109.293.2075.10374.40212.205982.1039840.4709965.22551308.113142176
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-3)
k=3: a(n) = a(n-1) +2*a(n-3)
k=4: a(n) = a(n-1) +4*a(n-3) -a(n-4) -2*a(n-6)
k=5: [order 50]
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..0..0. .1..1..0..0. .0..0..0..0. .0..0..0..0
..0..1..1..0. .0..0..1..1. .1..1..0..0. .0..0..0..0. .0..0..0..0
..1..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .1..1..0..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .1..1..0..0. .1..1..0..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .1..1..0..0. .0..0..0..0
CROSSREFS
Column 2 is A000930(n+1).
Column 3 is A003229.
Sequence in context: A306697 A297845 A183456 * A183342 A046688 A208342
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 10 2017
STATUS
approved