login
A296299
Dimension of the n-th component of a certain graded Lie algebra.
0
2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2
OFFSET
1,1
COMMENTS
Conjecture: Let b = 122112112221... be the sequence (a(n+1)), written as a word. Let mu be the morphism given by mu(1)=121, mu(2)=12221. Then b = 1221 mu(b). - Michel Dekking, Sep 29 2020
LINKS
Jean-Paul Allouche and Victor Petrogradsky, A conjecture of Dekking on the dimensions of the lower central series factors of a certain just infinite Lie algebra, J. Algebra (2023) Vol. 639, 708-719.
Otto Augusto de Morais Costa and Victor Petrogradsky, Fractal just infinite nil Lie superalgebra of finite width, arXiv:1707.06614 [math.RA], 2017, p. 21, Remark 3.
CROSSREFS
Sequence in context: A358401 A085028 A087888 * A109494 A074292 A156257
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Dec 09 2017
STATUS
approved