This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296248 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. 2
 2, 3, 30, 69, 148, 281, 510, 891, 1522, 2557, 4248, 7001, 11474, 18731, 30494, 49549, 80404, 130353, 211198, 342035, 553762, 896373, 1450760, 2347809, 3799298, 6147891, 9948030, 16096882, 26045936, 42143907, 68190999, 110336131, 178528426, 288865926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13. FORMULA a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number. EXAMPLE a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5; a(2) = a(0) + a(1) + b(2) = 30 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...) MATHEMATICA a = 2; a = 3; b = 1; b = 4; b = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2; j = 1; While[j < 6 , k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]     (* A296248 *) Table[b[n], {n, 0, 20}]  (* complement *) CROSSREFS Cf. A001622, A296245. Sequence in context: A228269 A167453 A095927 * A325506 A203431 A137981 Adjacent sequences:  A296245 A296246 A296247 * A296249 A296250 A296251 KEYWORD nonn,easy AUTHOR Clark Kimberling, Dec 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 16:08 EDT 2019. Contains 328101 sequences. (Running on oeis4.)