login
A296168
Decimal expansion of BesselJ(1,2)/BesselJ(0,2).
5
2, 5, 7, 5, 9, 2, 0, 3, 2, 1, 3, 6, 8, 2, 2, 1, 9, 5, 6, 8, 5, 7, 4, 9, 6, 7, 8, 2, 3, 1, 5, 0, 4, 4, 4, 9, 0, 6, 1, 2, 9, 8, 1, 9, 5, 3, 2, 6, 0, 0, 1, 5, 1, 4, 6, 2, 7, 8, 2, 7, 2, 4, 1, 9, 9, 3, 2, 0, 0, 2, 4, 9, 9, 1, 3, 9, 2, 2, 7, 4, 2, 3, 2, 1, 3, 5, 1, 5, 6, 4, 0, 1, 0, 9, 3, 0, 1, 4, 5, 3
OFFSET
1,1
FORMULA
Equals 2 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + 1/(4 + 1/(1 + 1/(5 + 1/(1 + 1/(6 + ...))))))))))).
EXAMPLE
2.575920321368221956857496782315044490612981953260015...
MATHEMATICA
RealDigits[BesselJ[1, 2]/BesselJ[0, 2], 10, 100] [[1]]
RealDigits[Sum[(-1)^k/((k + 1) (k!)^2), {k, 0, Infinity}]/Sum[(-1)^k/(k!)^2, {k, 0, Infinity}], 10, 100][[1]]
PROG
(PARI) besselj(1, 2)/besselj(0, 2) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Dec 06 2017
STATUS
approved