login
A296157
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 3 or 5 king-move neighboring 1s.
7
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 9, 7, 1, 1, 12, 16, 16, 12, 1, 1, 21, 34, 32, 34, 21, 1, 1, 37, 76, 91, 91, 76, 37, 1, 1, 65, 157, 237, 341, 237, 157, 65, 1, 1, 114, 325, 585, 1150, 1150, 585, 325, 114, 1, 1, 200, 692, 1513, 3775, 5171, 3775, 1513, 692, 200, 1, 1, 351, 1459
OFFSET
1,5
COMMENTS
Table starts
.1...1...1....1.....1......1.......1........1.........1..........1...........1
.1...2...4....7....12.....21......37.......65.......114........200.........351
.1...4...9...16....34.....76.....157......325.......692.......1459........3064
.1...7..16...32....91....237.....585.....1513......3908......10086.......26367
.1..12..34...91...341...1150....3775....12798.....43185.....146144......496975
.1..21..76..237..1150...5171...21087....90404....396578....1708355.....7449218
.1..37.157..585..3775..21087..108933...605121...3383481...18933967...108596954
.1..65.325.1513.12798..90404..605121..4342381..31360402..230562749..1738478648
.1.114.692.3908.43185.396578.3383481.31360402.296784399.2857761925.28501758381
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=3: [order 15]
k=4: [order 43]
EXAMPLE
Some solutions for n=7 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1
..1..1..1..1. .1..1..1..1. .0..1..1..0. .1..1..1..1. .1..1..1..1
..1..1..1..1. .1..1..1..1. .0..1..1..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..0..0. .0..1..1..0. .0..0..0..0. .1..1..1..1. .0..0..1..1
..1..1..0..0. .0..1..1..0. .0..0..1..1. .1..1..1..1. .0..0..1..1
..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
CROSSREFS
Column 2 is A005251(n+2).
Sequence in context: A128562 A034368 A361745 * A113582 A347147 A295213
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 06 2017
STATUS
approved