login
A296119
Number of ways to choose a strict factorization of each factor in a factorization of n.
12
1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 16, 2, 3, 4, 7, 1, 12, 1, 12, 3, 3, 3, 21, 1, 3, 3, 16, 1, 12, 1, 7, 7, 3, 1, 33, 2, 7, 3, 7, 1, 16, 3, 16, 3, 3, 1, 34, 1, 3, 7, 23, 3, 12, 1, 7, 3, 12, 1, 50, 1, 3, 7, 7, 3, 12, 1, 33, 7, 3
OFFSET
1,4
FORMULA
Dirichlet g.f.: 1/Product_{n > 1}(1 - A045778(n)/n^s).
EXAMPLE
The a(24) = 16 twice-factorizations:
(2)*(2)*(2)*(3),
(2)*(2)*(2*3), (2)*(2)*(6), (2)*(3)*(4),
(2)*(2*6), (2)*(3*4), (2)*(12), (3)*(2*4), (3)*(8), (4)*(2*3), (4)*(6),
(2*3*4), (2*12), (3*8), (4*6), (24).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Times@@(Length[Select[facs[#], UnsameQ@@#&]]&/@fac), {fac, facs[n]}], {n, 100}]
PROG
(PARI)
A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1))));
A296119(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A045778(d)*A296119(n/d, d)))); \\ Antti Karttunen, Oct 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 05 2017
STATUS
approved