login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296085 Filter sequence combining A296078(n) and A296092(n), the prime signatures of 1+phi(n) and 1+sigma(n). 5
1, 2, 1, 3, 1, 1, 2, 4, 5, 1, 1, 1, 5, 2, 6, 7, 1, 8, 5, 9, 5, 1, 2, 9, 10, 1, 1, 5, 1, 9, 5, 11, 12, 5, 6, 13, 5, 1, 14, 5, 1, 1, 13, 15, 9, 1, 2, 3, 5, 15, 16, 17, 5, 2, 1, 6, 4, 5, 1, 2, 13, 1, 18, 19, 14, 15, 5, 16, 20, 14, 1, 21, 13, 5, 3, 5, 1, 6, 4, 15, 15, 1, 5, 21, 16, 5, 12, 1, 5, 14, 1, 22, 5, 5, 2, 15, 13, 13, 1, 5, 1, 15, 18, 9, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Restricted growth sequence transform of P(A296078(n), A296092(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

For all i, j:

  a(i) = a(j) => A296213(i) = A296213(j).

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

Eric Weisstein's World of Mathematics, Pairing Function

Wikipedia, Pairing Function

PROG

(PARI)

up_to = 65537;

rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };

write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }

A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011

A296078(n) = A046523(1+eulerphi(n));

A296092(n) = A046523(1+sigma(n));

Anotsubmitted5(n) = (1/2)*(2 + ((A296078(n)+A296092(n))^2) - A296078(n) - 3*A296092(n));

write_to_bfile(1, rgs_transform(vector(up_to, n, Anotsubmitted5(n))), "b296085.txt");

CROSSREFS

Cf. A000010, A000203, A046523, A296078, A296092, A296213.

Sequence in context: A070099 A126760 A206437 * A007740 A117811 A297381

Adjacent sequences:  A296082 A296083 A296084 * A296086 A296087 A296088

KEYWORD

nonn

AUTHOR

Antti Karttunen, Dec 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 03:00 EDT 2019. Contains 322237 sequences. (Running on oeis4.)