%I #15 Sep 23 2020 12:51:59
%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1
%N a(n) = 1 if 1 + A002322(n) is prime, 0 otherwise, where A002322 is Carmichael lambda.
%C Out of the first 65537 values, 39743 are 1's (indicating primes), and 25794 are 0's, indicating nonprimes.
%H Antti Karttunen, <a href="/A296077/b296077.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F a(n) = A010051(A263027(n)) = A010051(1+A002322(n)).
%t Table[If[PrimeQ[CarmichaelLambda[n]+1],1,0],{n,120}] (* _Harvey P. Dale_, Sep 23 2020 *)
%o (PARI) A296077(n) = isprime(1+lcm(znstar(n)[2]));
%Y Characteristic function for A263028.
%Y Cf. A002322, A010051, A263027, A263029 (positions of zeros), A296076, A296079.
%K nonn
%O 1,1
%A _Antti Karttunen_, Dec 05 2017