login
A296077
a(n) = 1 if 1 + A002322(n) is prime, 0 otherwise, where A002322 is Carmichael lambda.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
OFFSET
1,1
COMMENTS
Out of the first 65537 values, 39743 are 1's (indicating primes), and 25794 are 0's, indicating nonprimes.
FORMULA
a(n) = A010051(A263027(n)) = A010051(1+A002322(n)).
MATHEMATICA
Table[If[PrimeQ[CarmichaelLambda[n]+1], 1, 0], {n, 120}] (* Harvey P. Dale, Sep 23 2020 *)
PROG
(PARI) A296077(n) = isprime(1+lcm(znstar(n)[2]));
CROSSREFS
Characteristic function for A263028.
Cf. A002322, A010051, A263027, A263029 (positions of zeros), A296076, A296079.
Sequence in context: A015435 A014676 A015343 * A322674 A236861 A016300
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 05 2017
STATUS
approved