login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296067 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k. 2
1, 1, 0, 1, 1, 0, 1, 2, -1, 0, 1, 3, -1, 0, 0, 1, 4, 0, -2, 1, 0, 1, 5, 2, -5, 3, 0, 0, 1, 6, 5, -8, 3, 2, -1, 0, 1, 7, 9, -10, -1, 9, -4, -1, 0, 1, 8, 14, -10, -10, 20, -7, -4, 2, 0, 1, 9, 20, -7, -24, 31, -2, -15, 5, 1, 0, 1, 10, 27, 0, -42, 36, 20, -40, 9, 8, -2, 0, 1, 11, 35, 12, -62, 28, 65, -75, 3, 27, -8, -1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..90.

FORMULA

G.f. of column k: Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.

G.f. of column k: (x^(1/8)*theta_2(sqrt(x))/theta_2(x))^k, where theta_() is the Jacobi theta function.

EXAMPLE

G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k - 3)*x^2 + (1/6)*k*(k^2 - 9*k + 8)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 59*k - 18)*x^4 + (1/120)*k*(k^4 - 30*k^3 + 215*k^2 - 330*k + 144)*x^5 + ...

Square array begins:

1,  1,  1,  1,   1,   1,  ...

0,  1,  2,  3,   4,   5,  ...

0, -1, -1,  0,   2,   5,  ...

0,  0, -2, -5,  -8, -10,  ...

0,  1,  3,  3,  -1, -10,  ...

0,  0,  2,  9,  20,  31,  ...

MATHEMATICA

Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i - 1))/(1 + x^(2 i)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Table[Function[k, SeriesCoefficient[(x^(1/8) EllipticTheta[2, 0, x^(1/2)]/EllipticTheta[2, 0, x])^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

CROSSREFS

Columns k=0..8 give A000007, A029838, A029839, A029840, A029841, A029842, A029843, A029844, A029845 (with offset 0).

Main diagonal gives A296043.

Cf. A296068.

Sequence in context: A267181 A131185 A286354 * A052249 A030528 A077227

Adjacent sequences:  A296064 A296065 A296066 * A296068 A296069 A296070

KEYWORD

sign,tabl

AUTHOR

Ilya Gutkovskiy, Dec 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 02:43 EST 2018. Contains 299473 sequences. (Running on oeis4.)