login
A296034
Number of n X 3 0..1 arrays with each 1 adjacent to 2 or 4 king-move neighboring 1s.
1
1, 11, 31, 70, 251, 799, 2266, 7005, 21780, 65489, 199273, 610585, 1857468, 5653794, 17249124, 52563162, 160123076, 488054813, 1487412562, 4532419434, 13812563405, 42094180094, 128277984857, 390920465658, 1191319783180, 3630484158342
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + a(n-2) + 11*a(n-3) - 7*a(n-4) - 12*a(n-5) - 23*a(n-6) + 19*a(n-8) + 9*a(n-9) - 3*a(n-10) - 2*a(n-11).
Empirical g.f.: x*(1 + 9*x + 8*x^2 - 14*x^3 - 34*x^4 - 25*x^5 + 19*x^6 + 28*x^7 + 6*x^8 - 5*x^9 - 2*x^10) / (1 - 2*x - x^2 - 11*x^3 + 7*x^4 + 12*x^5 + 23*x^6 - 19*x^8 - 9*x^9 + 3*x^10 + 2*x^11). - Colin Barker, Feb 22 2019
EXAMPLE
Some solutions for n=5:
..0..0..0. .0..0..0. .1..0..1. .0..1..0. .0..0..0. .1..0..1. .0..0..1
..1..0..0. .1..0..0. .1..1..1. .1..1..0. .1..1..0. .1..1..1. .1..1..1
..1..1..0. .1..1..1. .0..0..0. .0..0..0. .1..0..0. .0..0..0. .1..0..0
..1..1..0. .0..0..1. .1..1..0. .1..1..0. .1..1..0. .0..0..0. .1..1..0
..1..0..0. .0..1..1. .1..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0
CROSSREFS
Column 3 of A296039.
Sequence in context: A090562 A174244 A136061 * A090233 A139836 A085715
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 03 2017
STATUS
approved