Maple-assisted proof of formula for A296014

Robert Israel

3 December 2017
There are $2^{6}=64$ possible configurations for a 2×3 sub-array. Consider the 64×64 transition matrix T such that $T_{i j}=1$ if the bottom two rows of a 3×3 sub-array could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j, and each 1 in that row is king-move adjacent to 1 or 4 1's), and 0 otherwise. The following Maple code computes it. I'm encoding a configuration

$$
\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
b_{4} & b_{5} & b_{6}
\end{array}\right]
$$

as $b+1$ where $b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$ is the binary representation of b. The +1 is needed because matrix indices start at 1 rather than 0 .

```
> q:= proc(a,b) local r,s,t,M,i;
    s:= floor((a-1)/8);
    if s <> (b-1) mod 8 then return 0 fi;
    s:= convert(s+8,base,2);
    r:= convert(8+floor((b-1)/8),base,2);
    t:= convert(8+ ((a-1) mod 8),base,2);
    M:= Vector(3);
    if s[1] = 1 and s[2] = 1 then M[1]:= 1; M[2]:= 1 fi;
    if s[2]=1 and s[3]=1 then M[2]:= M[2]+1; M[3]:= 1 fi;
    for i from 1 to 3 do if s[i]=1 then
        M[i]:= M[i]+r[i]+t[i];
        if i > 1 then M[i]:= M[i]+r[i-1]+t[i-1] fi;
        if i < 3 then M[i]:= M[i]+r[i+1]+t[i+1] fi;
        if M[i] <> 1 and M[i] <> 4 then return O fi;
    fi od;
    1
    end proc:
    T:= Matrix(64,64, q):
```

Thus $a(n)=u T^{n} v$ where u and v are row and column vectors respectively with $u_{i}=1$ for i corresponding to configurations with bottom row $(0,0,0), 0$ otherwise, and $v_{i}=1$ for i corresponding to configurations with top row ($0,0,0$), 0 otherwise. The following Maple code produces these vectors.

```
> u:= Vector[row](64):
    v:= Vector(64):
    for i from 0 to 7 do u[8*i+1]:= 1; v[i+1]:= 1;
    od:
```

To check, here are the first few entries of our sequence.

$$
\begin{align*}
& \text { > seq (u . } \mathrm{T}^{\wedge} \mathrm{n} \cdot \mathrm{v}, \mathrm{n}=1 \ldots 10 \text {); } \\
& \text { 3, 13, 30, 91, 280, 785, 2319, 6816, 19796, } 57991 \tag{1}
\end{align*}
$$

Now here is the minimal polynomial P of T, as computed by Maple.

```
> P:= unapply(LinearAlgebra:-MinimalPolynomial(T, t), t);
```

$$
\begin{align*}
P:= & t \rightarrow t^{19}-t^{18}-2 t^{17}-14 t^{16}+2 t^{15}+5 t^{14}+54 t^{13}+6 t^{12}+7 t^{11}-76 t^{10}-13 t^{9}-11 t^{8} \tag{2}\\
& +41 t^{7}+7 t^{6}+t^{5}-6 t^{4}-t^{3}
\end{align*}
$$

This turns out to have degree 19. Thus we will have $0=u P(T) T^{n} v=\sum_{i=0}^{19} p_{i} a(i+n)$ where p_{i} is the coefficient of t^{i} in $P(t)$. That corresponds to a homogeneous linear recurrence of order 19, which would hold true for any u and v. It seems that with our particular u and v we have a recurrence of order only 10 , corresponding to a factor of P.

$$
\begin{align*}
& {\left[\begin{array}{l}
>\text { factor }(\mathrm{P}(\mathrm{t})) ; \\
t^{3}(t-1)\left(t^{3}+t-1\right)\left(t^{10}-t^{9}-3 t^{8}-11 t^{7}+3 t^{6}+11 t^{5}+27 t^{4}-t^{3}-6 t^{2}-7 t-1\right)\left(t^{2}\right. \\
\quad+t+1)
\end{array}\right.} \\
& {\left[\begin{array}{l}
>Q:=\text { unapply (t^10-t^9-3*} \mathrm{t}^{\wedge} 8-11 * \mathrm{t}^{\wedge} 7+3 * \mathrm{t}^{\wedge} 6+11 * \mathrm{t}^{\wedge} 5+27 * \mathrm{t}^{\wedge} 4-\mathrm{t}^{\wedge} 3-6 * \mathrm{t}^{\wedge} 2 \\
-7 * \mathrm{t}-1, \mathrm{t}) ; \\
Q:=t \rightarrow t^{10}-t^{9}-3 t^{8}-11 t^{7}+3 t^{6}+11 t^{5}+27 t^{4}-t^{3}-6 t^{2}-7 t-1
\end{array}\right.} \tag{3}
\end{align*}
$$

The complementary factor $R(t)=\frac{P(t)}{Q(t)}$ has degree 9 .

$$
\left[\begin{array}{rl}
>\mathrm{R}:=\text { unapply (normal }(\mathrm{P}(\mathrm{t}) / \mathrm{Q}(\mathrm{t})), \mathrm{t}) ; \\
& R:=t \rightarrow\left(t^{6}+t^{4}-2 t^{3}-t+1\right) t^{3} \tag{5}
\end{array}\right.
$$

Now we want to show that $b(n)=u Q(T) T^{n} v=0$ for all n. This will certainly satisfy the order- 9 recurrence

$$
\sum_{i=0}^{9} r_{i} b(i+n)=\sum_{i=0}^{9} r_{i} u Q(T) T^{n+i} v=u Q(T) R(T) T^{n} v=u P(T) T^{n} v=0
$$

where r_{i} are the coefficients of $R(t)$. To show all $b(n)=0$ it suffices to show $b(0)=\ldots=b(8)=0$.

$$
\left[\begin{array}{r}
>\operatorname{seq}\left(\mathrm{u} \cdot Q(T) \cdot \mathrm{T}^{\wedge} \mathrm{n} \cdot \begin{array}{r}
\mathrm{v} \\
0,0,0,0,0,0,0,0,0
\end{array}\right. \tag{6}
\end{array}\right.
$$

