login
Number of nX5 0..1 arrays with each 1 adjacent to 2 or 3 king-move neighboring 1s.
1

%I #4 Dec 01 2017 15:32:37

%S 1,90,581,3851,62702,649470,6388097,74040837,809517928,8644829320,

%T 95041783912,1038841307344,11282589439523,123121658373135,

%U 1343340780019400,14636132302489723,159576990920418926

%N Number of nX5 0..1 arrays with each 1 adjacent to 2 or 3 king-move neighboring 1s.

%C Column 5 of A295985.

%H R. H. Hardin, <a href="/A295982/b295982.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A295982/a295982.txt">Empirical recurrence of order 67</a>

%F Empirical recurrence of order 67 (see link above)

%e Some solutions for n=5

%e ..0..1..1..0..1. .0..0..1..1..0. .1..1..0..1..0. .1..1..0..1..1

%e ..1..0..0..1..1. .1..1..0..1..1. .1..0..1..1..0. .1..0..0..0..1

%e ..0..1..0..0..0. .1..0..0..0..0. .1..0..0..0..0. .0..0..0..0..0

%e ..1..0..1..1..1. .0..1..1..1..0. .1..1..0..0..0. .0..1..1..1..1

%e ..1..1..0..0..1. .0..0..0..1..1. .1..0..0..0..0. .0..1..0..0..1

%Y Cf. A295985.

%K nonn

%O 1,2

%A _R. H. Hardin_, Dec 01 2017